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Rolling contact fatigue (RCF) of bearings
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Bearings need to undergo 

106 – 109 cycles! 

Detrimental service environment:

 High contact pressure (p0)

 High rotational speed ( ሶ𝑵)

 High temperature (T)

 High number of  stress cycles (N)

2



Microstructural alterations under RCF
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First report in history: 

Jones, 1947

40 μm200 μm50 μm

White etching areas 

(WEAs)

Dark etching regions 

(DER)

White etching bands 

(WEBs)

Three major types of microstructural alterations in bearing steels under 

rolling contact fatigue (revealed by 2% natal)
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105 – 106 cycles 107 – 108 cycles 108 – 109 cycles

 These microstructural alterations all display 

martensite decay and alter the mechanical 

properties of the material.

Initial microstructure: 

tempered martensite 5 μm

Inclusion

RD RDRD
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Characterisation – WEAs 

Grabulov et al., 2009 Kang et al., 2013 Li et al., 2014

 WEAs consist of nano-sized dislocation cells.

 Carbide dissolution is found inside WEAs.

 Distinct carbon segregation to cell walls is detected.
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Characterisation – DERs 
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Characterisation – DERs 
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5 μm

APT

Atom probe tomography 

(APT) on a DER

 Strong evidence of carbon segregation to pre-existing precipitates.
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Characterisation – WEBs  

1 μm

2 μm

 C enrichment is found in both the LC and the M3C carbides.

 Fe depletion is found in both the LC and the M3C carbides.  

 C depletion is found inside the ferrite band compared to the surrounding 

matrix.

 Cr is found in the M3C carbides only.

 WEBs are formed due to carbon segregation to LCs.

Mapping of elements 

using energy-dispersive 

X-ray spectroscopy 

(EDX)
LC

Matrix

Ferrite band

M3C
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Characterisation – WEBs  

Electron energy loss spectroscopy 

(EELS) on C

 The LC consists of numerous carbide crystallites.

 The carbon content in the LC is approximately 23 at%, 

close to that in cementite (25 at%).

Focused ion beam (FIB) 

and transmission electron 

microscopy (TEM) on a 

WEB

LC

Matrix

Ferrite band

25 at% C

23 at% C

LC
M3C
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Summary of phenomenology and modelling strategy 

WEAs DERs WEBs

Carbon-enriched zones Dislocation cell walls Pre-existing precipitates Lenticular carbides

Carbon-depleted zones Dislocation cell interiors Matrix Ferrite bands

Carbon migration distance Nanometers Hundreds of nanometers Microns

Carbon redistribution

Modelling microstructural alterations under RCF 

They are form only in stress-affected regions. They are stress-induced.

They all exhibit carbon redistributions. Their formations are governed by carbon migration.

They are accelerated by increasing T and/or p0.
Both thermal and stress mechanisms operate during

their formations.

Martensite is a highly dislocated phase

supersaturated with carbon.

The interaction between dislocations and carbon

plays a vital role during their formations.

Facts Implications
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Dislocation assisted carbon migration theory

Cottrell atmosphere theory

 Proposed by Cottrell 

and Bilby in 1949

 First observed by 

Chang et al. in 1984

Orowan equation

Strain 

rate

Burgers 

vector

Dislocation 

density

Dislocation 

velocity

 Proposed by Orowan in 1948

Combination of two classical theories
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Matrix

Dislocation assisted carbon migration theory
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Microstructural alterations models – WEAs
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Microstructural alterations models – DERs
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Microstructural alterations models – WEBs

Ferrite band

I. Carbide nucleation at

ferrite band boundary

II. Coalesce of carbide

crystallites to form LC

III. Carbide growth leading

to LC thickening

Carbide 

crystallite

Carbide 

nucleus

lLC

λ
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Experimental verification – WEAs model 
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EXP and theoretical calculation: Furumura et al., 1996
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Experimental verification – DERs model

DER%

Exp: this research, 2017 Exp: this research, 2017

Exp: Bush et al., 1961 Exp: Lund, 1969 Exp: Bush et al., 1961
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Experimental verification – WEBs model
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Exp1: Buchwald and Heckel, 1968

Exp2: this research, 2017
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Unified theory of microstructural alterations

II (C-enriched zone)
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EXP: Furumura et al., 1996
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Summary of historical data validating the theory 
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Tools for bearing industry – alterations maps

No alterations

WEAs + DERs

WEAs

WEAs + DERs + WEBs

No alterations

WEAs + DERs

WEAs
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N /cpm

No alterations

WEAs + DERs

WEAs

WEAs + DERs 

+ WEBs

Before this research, microstructural alterations under RCF were studied by conducting full endurance 

bearing tests, which could cost up to 100,000 GBP to evaluate a new bearing type.

Now, the formation progress of any type of microstructural alterations can be directly indexed from the

maps for any given RCF testing conditions. Theses tools are now being used by SKF.

EXP: Takemura et al., 2001
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Tools for bearing industry – DERs maps
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Design of fatigue resistant bearing steels
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• To avoid WEA formation – increasing carbide stability – alloying element modification & severe 

tempering

• To avoid DER formation – increasing steel strength – slight tempering

• To avoid WEB formation – increasing carbide stability & increasing steel strength – alloying 

element modification

Depending on the purpose of the bearing, a trade off must be made between different types of 

microstructural alterations!

• For low p0 and low N bearings, WEA formation should be avoided by severe tempering to minimize 

cost. 

• For low p0 and high N bearings, WEA, DER and WEB formation should be avoided by alloying 

element modification.

• For high p0 and low N bearings, DER and WEB formation should be avoided by slight tempering to 

minimize cost.

• For high p0 and high N bearings, DER and WEB formation should be avoided by slight tempering 

with alloying element modification.



Achievements 

 DERs and WEBs are characterised with advanced characterisation techniques (SEM, FIB/TEM and

APT).

 A novel dislocation assisted carbon migration theory is proposed for microstructural alterations under

RCF.

 The formations of three major types of microstructural alterations, WEAs, DERs and WEBs are, for

the first time, quantitatively modelled.

 The suggested models are validated by experimental observations in this research.

 The suggested models are successfully applied to the reported experimental data over the past 50

years.

 Tools for bearing industry are developed, reducing the necessity of conducting expensive and time-

consuming full endurance bearing tests.

 The models lead to the tailoring of novel bearing steels with outstanding fatigue resistance.
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